TRANSFERENCE THEORY
Introduced by: RICHARD J.KOSCIEJEW
The nerves do not perform an action directly on or upon the nerves of which actions are chemical responses, freed by the stimulation of nerves in heart rate and other functional changes, as they are identified as the chemical transmitter of nerve impulses. One such chemical nerve transmitter has been identified as ‘acetylcholine’ a chemical that serves to transmit nerve impulses in the involuntary nerve system.
We acknowledge the neurotransmitters are inherently made by chemically induced neurons, or nerve cells. Neurons send out neurotransmitters as chemical signals to activate or inhibit the function of neighboring cells.
Within the central nervous system, which consists of the brain and the spinal cord, neurotransmitters pass from neuron to neuron. In the peripheral nervous system, which is made up of the nerves that run from the central nervous system to the rest of the body, the chemical signals pass between a neuron and an adjacent muscle or gland cells.
Chemical compounds - belonging to three chemical families - are widely recognized as neurotransmitters. In addition, certain other body chemicals, including adenosine, histamine, enkephalins, endorphins, and epinephrine, have neurotransmitterlike properties. Experts believe that there are many more neurotransmitters yet undiscovered.
The first of the three families is composed of amines, a group of compounds containing molecules of carbon, hydrogen, and nitrogen. Among the amine neurotransmitters are acetylcholine, norepinephrine, dopamine, and serotonin. Acetylcholine is the most widely used neurotransmitter in the body, and neurons that leave the central nervous system (for example, those running to skeletal muscle) use acetylcholine as their neurotransmitter; neurons that run to the heart, blood vessels, and other organs may use acetylcholine or norepinephrine. Dopamine is involved in the movement of muscles, and it controls the secretion of the pituitary hormone prolactin, which triggers milk production in nursing mothers.
The second neurotransmitter family is composed of amino acids, organic compounds containing both an amino group (NH2) and a carboxylic acid group (COOH). Amino acids that serve as neurotransmitters include glycine, glutamic and aspartic acids, and gamma-amino butyric acid (GABA). Glutamic acid and GABA are the most abundant neurotransmitters within the central nervous system, and especially in the cerebral cortex, which is largely responsible for such higher brain functions as thought and interpreting sensations.
The third neurotransmitter family is composed of peptides, which are compounds that contain at least two, and sometimes as many as 100 amino acids. Peptide neurotransmitters are poorly understood, but scientists know that the peptide neurotransmitter called substance P influences the sensation of pain.
Overall, each neuron uses only a single compound as its neurotransmitter. However, some neurons outside the central nervous system can release both an amine and a peptide neurotransmitter.
Neurotransmitters are manufactured from precursor compounds like amino acids, glucose, and the dietary amine-called choline. Neurons modify the structure of these precursor compounds in a series of reactions with enzymes. Neurotransmitters that comes from amino acids include serotonin, for which it is derived from tryptophan. Dopamine and norepinephrine, under which are derived from tyrosine, and glycine, which is derived from threonine. Among the neurotransmitters made from glucose are glutamate, aspartate, and GABA. The choline serves as the precursor for acetylcholine
Neurotransmitters are released into a microscopic gap, called a synapse, that separates the transmitting neuron from the cell receiving the chemical signal. The cell that generates the signal is called the presynaptic cell, while the receiving cell is termed the postsynaptic cell.
After their release into the synapse, neurotransmitters combine chemically with highly specific protein molecules, termed receptors, embedded in the surface membranes of the postsynaptic cell. When this combination occurs, the voltage, or electrical force, of the postsynaptic cell is either increased (excited) or decreased (inhibited).
When a neuron is in its resting state, its voltage is about -70 millivolts. An excitatory neurotransmitter alters the membrane of the postsynaptic neuron, making it possible for ions (electrically charged molecules) to move back and forth across the neuron’s membranes. This flow of ions makes the neuron’s voltage rise toward zero. If enough excitatory receptors have been activated, the postsynaptic neuron responds by firing, generating a nerve impulse that causes its own neurotransmitter to be released into the next synapse. An inhibitory neurotransmitter causes different ions to pass back and forth across the postsynaptic neuron’s membrane, lowering the nerve cell’s voltage to -80 or -90 millivolts. The drop in voltage makes it less likely that the postsynaptic cell will fire.
If the postsynaptic cell is a muscle cell rather than a neuron, an excitatory neurotransmitter will cause the muscle to contract. If the postsynaptic cell is a gland cell, an excitatory neurotransmitter will cause the cell to secrete its contents.
While most neurotransmitters interact with their receptors to create new electrical nerve impulses that energize or inhibit the adjoining cell, some neurotransmitter interactions do not generate or suppress nerve impulses. Instead, they interact with a second type of receptor that changes the internal chemistry of the postsynaptic cell by either causing or blocking the formation of chemicals called second messenger molecules. These second messengers regulate the postsynaptic cell’s biochemical processes and enable it to conduct the maintenance necessary to continue synthesizing neurotransmitters and conducting nerve impulses. Examples of second messengers, which are formed and entirely contained within the postsynaptic cell, include cyclic adenosine monophosphate, diacylglycerol, and inositol phosphates.
Once neurotransmitters have been secreted into synapses and have passed on their chemical signals, the presynaptic neuron clears the synapse of neurotransmitter molecules. For example, acetylcholine is broken down by the enzyme acetylcholinesterase into choline and acetate. Neurotransmitters like dopamine, serotonin, and GABA is removed by a physical process called reuptake. In reuptake, a protein in the presynaptic membrane acts as a sort of sponge, causing the neurotransmitters to reenter the presynaptic neuron, where they can be broken down by enzymes or repackaged for reuse.
Neurotransmitters are known to be involved in many disorders, including Alzheimer’s disease. Victims of Alzheimer’s disease suffer from loss of intellectual capacity, disintegration of personality, mental confusion, hallucinations, and aggressive - even violent - behavior. These symptoms are the result of progressive degeneration in many types of neurons in the brain. Forgetfulness, one of the earliest symptoms of Alzheimer’s disease, is partly caused by the destruction of neurons that normally release the neurotransmitter acetylcholine. Medications that increase brain levels of acetylcholine have helped restore short-term memory and reduce mood swings in some Alzheimer’s patients.
Neurotransmitters also play a role in Parkinson disease, which slowly attacks the nervous system, causing symptoms that worsen over time. Fatigue, mental confusion, a masklike facial expression, stooping posture, shuffling gait, and problems with eating and speaking are among the difficulties suffered by Parkinson victims. These symptoms have been partly linked to the deterioration and eventual death of neurons that run from the base of the brain to the basal ganglia, a collection of nerve cells that manufacture the neurotransmitter dopamine. The reasons why such neurons die are yet to be understood, but the related symptoms can be alleviated. L-dopa, or levodopa, widely used to treat Parkinson disease, acts as a supplementary precursor for dopamine. It causes the surviving neurons in the basal ganglia to increase their production of dopamine, by that compensating to some extent for the disabled neurons.
Dopamine, is also refereed as the chemical known to be a neurotransmitter, which is essential to the functioning of the central nervous system. In the process of neurotransmission, dopamine is transferred from one nerve cell, or neuron, to another, playing a key role in brain function and human behavior.
Dopamine forms from a precursor molecule called dopa, which is manufactured in the liver from the amino acid tyrosine. Dopa is then transported by the circulatory system to neurons in the brain, where the conversion to dopamine takes place.
Dopamine is a versatile neurotransmitter. Among its many functions, it plays a major role in two activities of the central nervous system: one that helps control movement, and a second that is strongly associated with emotion-based behaviors.
The pathway involved in movement control is called the nigrostriatal pathway. Dopamine is released by neurons that originate from an area of the brain called the substantia nigra and connect to the part of the brain known as the corpora striata, an area known to be important in controlling the musculoskeletal system.
The second brain pathway in which dopamine plays a major role is called the mesocorticolimbic pathway. Neurons in an area of the brain called the ventral tegmentalarea transmit dopamine to other neurons connected to various parts of the limbic system, which is responsible for regulating emotion, motivation, behavior, the sense of smell, and various autonomic, or involuntary, functions like heartbeat and breathing.
A growing body of evidence suggests that dopamine is involved in several major brain disorders. Narcolepsy, a disorder characterized by brief, recurring episodes of sudden, deep sleep, is associated with abnormally high levels of both dopamine and a second neurotransmitter, acetylcholine. Huntington’s chorea, an inherited, fatal illness in which neurons in the base of the brain are progressively destroyed, is also linked to an excess of dopamine.
Commonly known as shaking palsy, Parkinson disease is another brain disorder in which dopamine is involved. Besides tremors of the limbs, Parkinson patients suffer from muscular rigidity, which leads to difficulties in walking, writing, and speaking. This disorder results from the degeneration and death of neurons in the nigrostriatal pathway, resulting in low levels of dopamine. The symptoms of Parkinson disease can be minimized by treatment with a drug called levodopa, or L-dopa, which converts to dopamine in the brain.
Schizophrenia is a psychiatric disorder characterized by loss of contact with reality and major changes in personality. Schizophrenics have normal levels of dopamine in the brain, but because they are highly sensitive to this neurotransmitter, these normal levels of dopamine trigger unusual behaviors. Drugs such as thorazine that block the action of dopamine have been found to decrease the symptoms of schizophrenia.
Studies indicate that people who are addicted to alcohol and other drugs like cocaine and nicotine have less dopamine in the mesocorticolimbic pathway. These drugs appear to increase dopamine levels, resulting in the pleasurable feelings associated with the drugs.
Many other effective drugs have been shown to act by influencing neurotransmitter behavior. Some drugs work by interfering with the interactions between neurotransmitters and intestinal receptors. For example, belladonna decreases intestinal cramps in such disorders as irritable bowel syndrome by blocking acetylcholine from combining with receptors. This process reduces nerve signals to the bowel wall, which prevents painful spasms.
Other drugs block the reuptake process. One well-known example is the drug fluoxetine (Prozac), which blocks the reuptake of serotonin. Serotonin then remains in the synapse for a longer time, and its ability to act as a signal is prolonged, which contributes to the relief of depression and the control of obsessive-compulsive behaviors.
Studies suggest that people who are addicted to alcohol and other drugs like, cocaine and nicotine have less dopamine in the mesocorticolimbic pathway. These drugs appear to increase dopamine levels, resulting in the pleasurable feelings associated with the drugs.
Serotonin, neurotransmitter, or chemical that transmits messages across the synapses, or gaps, between adjacent cells. Among its many functions, serotonin is released from blood cells called platelets to activate blood vessel constriction and blood clotting. In the gastrointestinal tract, serotonin inhibits gastric acid production and stimulates muscle contraction in the intestinal wall. Its functions in the central nervous system and effects on human behavior - including mood, memory, and appetite control - have been the subject of a great deal of research. This intensive study of serotonin has revealed important knowledge about the serotonin-related cause and treatment of many illnesses.
Serotonin is produced in the brain from the amino acid tryptophan, which is derived from foods high in protein, such as meat and dairy products. Tryptophan is transported to the brain, where it is broken down by enzymes to produce serotonin. During neurotransmission, serotonin is transferred from one nerve cell, or neuron, to another, triggering an electrical impulse that stimulates or inhibits cell activity as needed. Serotonin is then reabsorbed by the first neuron, in a process known as reuptake, where it is recycled and used again or converted into an inactive chemical form and excreted.
While the complete picture of serotonin’s function in the body is still being investigated, many disorders are known to be associated with an imbalance of serotonin in the brain. Drugs that manipulate serotonin levels have been used to alleviate the symptoms of serotonin imbalances. Some of these drugs, known as selective serotonin reuptake inhibitors (SSRIs), block or inhibit the reuptake of serotonin into neurons, enabling serotonin to remain active in the synapses for a longer period. These medications are used to treat such psychiatric disorders as depression; Obsessive-compulsive disorder, in which repetitive and disturbing thoughts trigger bizarre, ritualistic behaviors, and impulsive aggressive behaviors. Fluoxetine (more commonly known by the brand name Prozac), is a widely prescribed SSRI used to treat depression, and more recently, obsessive-compulsive disorder.
Drugs that affect serotonin levels may prove beneficial in the treatment of nonpsychiatric disorders as well, including diabetic neuropathy (degeneration of nerves outside the central nervous system in diabetics) and premenstrual syndrome. Recently the serotonin-releasing agent dexfenfluramine has been approved for patients who are 30 percent or more over their ideal body weight. By preventing serotonin reuptake, dexfenfluramine promotes satiety, or fullness, after eating less food.
Other drugs serve as agonists that react with neurons to produce effects similar to those of serotonin. Serotonin agonists have been used to treat migraine headaches, in which low levels of serotonin cause arteries in the brain to swell, resulting in a headache. Sumatriptan is an agonist drug that mimics the effects of serotonin in the brain, constricting blood vessels and alleviating pain.
Drugs known as antagonists bind with neurons to prevent serotonin neurotransmission. Some antagonists have been found effective in treating the nausea that typically accompanies radiation and chemotherapy in cancer treatment. Antagonists are also being tested to treat high blood pressure and other cardiovascular disorders by blocking serotonin’s ability to constrict blood vessels. Other antagonists may produce an effect on learning and memory in age-associated memory impairment.
The Synapse is the signal conveying everything that human beings sense and think, and every motion they make, follows nerve pathways in the human body as waves of ions (atoms or groups of atoms that carries electric charges). Australian physiologist Sir John Eccles discovered many intricacies of this electrochemical signaling process, particularly the pivotal step in which a signal is conveyed from one nerve cell to another. He shared the 1963 Nobel Prize in physiology or medicine for this work, which he described in a 1965 Scientific American article.
How does one nerve cell transmit the nerve impulse to another cell? Electron microscopy and other methods show that it does so by means of special extensions that deliver a squirt of transmitter substance
The human brain is the most highly organized form of matter known, and in complexity the brains of the other higher animals are not greatly inferior. For certain purposes regarding the brain for being analogous to a machine is expedient. Even if it is so regarded, however, it is a machine of a totally different kind from those made by man. In trying to understand the workings of his own brain man meets his highest challenge. Nothing is given; There are no operating diagrams, no maker's instructions.
The first step in trying to understand the brain is to examine its structure to discover the components from which it is built and how they are related to each another. After that one can attempt to understand the mode of operation of the simplest components. These two modes of investigation - the morphological and the physiological - have now become complementary. In studying the nervous system with today's sensitive electrical device, however, finding physiological events that cannot be correlated with any known anatomical structure is all too easy. Conversely, the electron microscope reveals many structural details whose physiological significance is obscure or unknown.
At the close of the past century the Spanish anatomist Santiago Ramón Cajal showed how all parts of the nervous system are built up of individual nerve cells of many different shapes and sizes. Like other cells, each nerve cell has a nucleus and the surrounding cytoplasm. Its outer surface consists of many fine branches - the dendrites - that receive nerve impulses from other nerve cells, and one relatively long branch - the axon - that transmits nerve impulses. Near its end the axon divides into branches that end at the dendrites or bodies of other nerve cells. The axon can be as short as a fraction of a millimeter or if a meter, depending on its place and function. It has many properties of an electric cable and is uniquely specialized to conduct the brief electrical waves called nerve impulses. In very thin axons these impulses travel at less than one meter per second; In others, for example in the large axons of the nerve cells that activate muscles, they travel as fast as 100 meters per second.
The electrical impulse that travels along the axon ceases abruptly when it comes to the point where the axon's terminal fibers contact another nerve cell. These junction points were given the name ‘synapses’ by Sir Charles Sherrington, who laid the foundations of what is sometimes called ‘synaptology’. If the nerve impulse is to continue beyond the synapse, it must be regenerated afresh on the other side. As recently as 15 years ago some physiologists held that transmission at the synapse was predominantly, if not exclusively, an electrical phenomenon. Now, however, there is abundant evidence that transmission is made by the release of specific chemical substances that trigger a regeneration of the impulse. In fact, the first strong evidence showing that some transmitter substance act across the synapse was provided more than 40 years ago by Sir Henry Dale and Otto Loewi.
It has been estimated that the human central nervous system, which of course includes the spinal cord and the brain itself, consists of about 10 billion (1010) nerve cells. With rare exceptions each nerve cell receives information directly as impulses from many other nerve cells - often hundreds - and transmits information to a like number. Depending on its threshold of response, a given nerve cell may fire an impulse when stimulated by only a few incoming fibers or it may not fire until stimulated by many incoming fibers. It has long been known that this threshold can be raised or lowered by various factors. Moreover, it was supposed some 60 years ago that some incoming fibers must inhibit the firing of the receiving cell rather than excite it. The conjecture was subsequently confirmed, and the mechanism of the inhibitory effect has now been clarified. This mechanism and its equally fundamental counterpart - nerve-cell excitation - are of its topic.
In the levels of anatomy there are some clues to show how the fine axon terminals impinging on a nerve cell can make the cell regenerate a nerve impulse of its own nerve cell and its dendrites are covered by fine branches of nerve fibers that end in knob-like structures. These structures are the synapses.
The electron microscope has revealed structural details of synapses that fit in nicely with the view that a chemical transmitter is involved in nerve transmission, as there are enclosed in the synaptic knob are many vesicles, or tiny sacs, which appear to contain the transmitter substances that induce synaptic transmission. Between the synaptic knob and the synaptic membrane of the adjoining nerve cell is a remarkably uniform space of about 20 millimicrons that is termed the synaptic cleft. Many of the synaptic vesicles are concentrated adjacent to this cleft; It seems plausible that the transmitter substance is discharged from the nearest vesicles into the cleft, where it can act on the adjacent cell membrane. This hypothesis is supported by the discovery that the transmitter is released in packets of a few thousand molecules.
The study of synaptic transmission was revolutionized in 1951 by the introduction of delicate techniques for recording electrically from the interior of single nerve cells. This is done by inserting into the nerve cell an extremely fine glass pipette with a diameter of .5 microns - about a fifty-thousandth of an inch. The pipette is filled with an electrically conducting salt solution such as concentrated potassium chloride. If the pipette is carefully inserted and held rigidly in place, the cell membrane appears to seal quickly around the glass, thus preventing the flow of a short-circuiting current through the puncture in the cell membrane. Impaled in this fashion, nerve cells can function normally for hours. Although there is no way of observing the cells during the insertion of the pipette, the insertion can be guided by using as clues the electric signals that the pipette picks up when close to active nerve cells.
At the John Curtin School of Medical Research in Canberra first employed this technique, choosing to study the large nerve cells called motoneurons, which lie in the spinal cord whose function is to activate muscles. This was a fortunate choice: Intracellular investigations with motoneurons are easier and more rewarding than those with any other kind of mammalian nerve cell.
Finding that when the nerve cell responds to the chemical synaptic transmitter, the response depends in part on characteristic features of ionic composition that are also concerned with the transmission of impulses in the cell and along its axon. When the nerve cell is at rest, its physiological makeup resembles that of most other cells in that the water solution inside the cell is quite different in composition from the solution in which the cell is bathed. The nerve cell can exploit this difference between external and internal composition and use it in quite different ways for generating an electrical impulse and for synaptic transmission.
The composition of the external solution is well established because the solution is essentially the same as blood from which cells and proteins have been removed. The composition of the internal solution is known only approximately. Indirect evidence suggests that the concentrations of sodium and chloride ions outside the cell are respectively some 10 and 14 times higher than the concentrations inside the cell. In contrast, the concentration of potassium ions inside the cell is about 30 times higher than the concentration outside.
How can one account for this remarkable state of affairs? Part of the explanation is that inside the cell is negatively charged with the respect of the cell about 70 millivolts. Since like charges repel each other, this internal negative charge tends to drive chloride ions (Cl-) outward through the cell membrane and, at the same time, to impede their inward movement. In fact, a potential difference of 70 millivolts is just sufficient to maintain the observed disparity in the concentration of chloride ions inside the cell and outside it; Chloride ions diffuse inward and outward at equal rates. A drop of 70 millivolts across the membrane therefore defines the ‘equilibrium potential’ for chloride ions.
To obtain a concentration of potassium ions (K) that is 30 times higher inside the cell than outside would require that the interior of the cell membrane be about 90 millivolts negative with respect to the exterior. Since the actual interior is only 70 millivolts negative, it falls short of the equilibrium potential for potassium ions by 20 millivolts. Evidently the thirtyfold concentration can be achieved and maintained only if there is some auxiliary mechanism for ‘pumping’ potassium ions into the cell at a rate equal to their spontaneous net outward diffusion.
The pumping mechanisms have fewer, but more difficult tasks of pumping sodium ions (Na) out of the cell against a potential gradient of 130 millivolts. This figure is obtained by adding the 70 millivolts of internal negative charge to the equilibrium potential for sodium ions, which is 60 millivolts of internal positive charge. If it were not for this postulated pump, the concentration of sodium ions inside and outside the cell would be almost the reverse of what is observed.
In their classic studies of nerve-impulse transmission in the giant axon of the squid, A.L. Hodgkin, A.F. Huxley and Bernhard Katz of Britain proved that the propagation of the impulse coincides with abrupt changes in the permeability of the axon membrane. When a nerve impulse has been triggered in some way, what can be described as a gate opens and lets sodium ions pour into the axon during the advance of the impulse, making the interior of the axon locally positive. The process is self-reinforcing in that the flow of some sodium ions through the membrane opens the gate further and makes it easier for others to follow. The sharp reversal of the internal polarity of the membrane makes up the nerve impulse, which moves like a wave until it has traveled the length of the axon. In the wake of the impulse the sodium gate closes and a potassium gate opens, by that restoring the normal polarity of the membrane within a millisecond or less.
With this understanding of the nerve impulse in hand, one is ready to follow the electrical events at the excitatory synapse. One might guess that if the nerve impulse results from an abrupt inflow of sodium ions and a rapid change in the electrical polarity of the axon's interior, something similar must happen at the body and dendrites of the nerve cell in order to generate the impulse in the first place. Indeed, the function of the excitatory synaptic terminals on the cell body and its dendrites is to depolarize the interior of the cell membrane essentially by permitting an inflow of sodium ions. When the depolarization reaches a threshold value, a nerve impulse is triggered.
As a simple instance of this phenomenon we have recorded the depolarization that occurs in a single motoneuron activated directly by the large nerve fibers that enter the spinal cord from special stretch-receptors known as annulospiral endings. These receptors in turn are found in the same muscle that is activated by the motoneuron under study. Thus the whole system forms a typical reflex arc, such as the arc responsible for the patellar reflex, or ‘knee jerk.’
To conduct the experiment we anesthetize an animal (most often a cat) and free by dissection a muscle nerves that contains these large nerve fibers. By applying a mild electric shock to the exposed nerve one can produce a single impulse in each of the fibers; Since the impulses travel to the spinal cord almost synchronously, they are referred to collectively as a volley. The number of impulses contained in the volley can be reduced by reducing the stimulation applied to the nerve. The volley strength is measured at a point just outside the spinal cord and is displayed on an oscilloscope. About half a millisecond after detection of a volley there is a wavelike change in the voltage inside the motoneuron that has received the volley. The change is detected by a microelectrode inserted in the motoneuron and is displayed on another oscilloscope.
What we find is that the negative voltage inside the cell becomes progressively fewer negative as more of the fibers impinging on the cell are stimulated to fire. This observed depolarization is in fact a simple summation of the depolarization produced by each individual synapse. When the depolarization of the interior of the motoneuron reaches a critical point, a ‘spike’ suddenly appears on the second oscilloscope, showing that a nerve impulse has been generated. During the spike the voltage inside the cell changes from about 70 millivolts negative to as much as 30 millivolts positive. The spike regularly appears when the depolarization, or reduction of membrane potential, reaches a critical level, which is usually between 10 and 18 millivolts. The only effect of a further strengthening of the synaptic stimulus is to shorten the time needed for the motoneuron to reach the firing threshold. The depolarizing potentials produced in the cell membrane by excitatory synapses are called excitatory postsynaptic potentials, or EPSP's.
Through one barrel of a double-barreled microelectrode one can apply a background current to change the resting potential of the interior of the cell membrane, either increasing it or decreasing it. When the potential is made more negative, the EPSP rises more steeply to an earlier peak. When the potential is made less negative, the EPSP rises more slowly to a lower peak. Finally, when the charge inside the cell is reversed so as to be positive with respect to the exterior, the excitatory synapses give rise to an EPSP that is actually the reverse of the normal one.
These observations support the hypothesis that excitatory synapses produce what amounts virtually to a short circuit in the synaptic membrane potential. When this occurs, the membrane no longer acts as a barrier to the passage of ions but lets them flow through in response to the differing electric potential on the two sides of the membrane. In other words, the ions are momentarily allowed to travel freely down their electrochemical gradients, which means that the sodium ions flow into the cell and, to a lesser degree, potassium ions flow out. It is this net flow of positive ions that creates the excitatory postsynaptic potential. The flow of negative ions, such as the chloride ion, is apparently not involved. By artificially altering the potential inside the cell one can establish that there is no flow of ions, and therefore no EPSP, when the voltage drop across the membrane is zero.
How is the synaptic membrane converted from a strong ionic barrier into an ion-permeable state? It is currently accepted that the agency of conversion is the chemical transmitter substance contained in the vesicles inside the synaptic knob. When a nerve impulse reaches the synaptic knob, some of the vesicles are caused to eject the transmitter substance into the synaptic cleft. The molecules of the substance would take only a few microseconds to diffuse across the cleft and become attached to specific receptor sites on the surface membrane of the adjacent nerve cell.
Presumably the receptor sites are associated with fine channels in the membrane that are opened in some way by the attachment of the transmitter-substance molecules to the receptor sites. With the channels thus opened, sodium and potassium ions flow through the membrane thousands of times more readily than they normally do, by that producing the intense ionic flux that depolarizes the cell membrane and produces the EPSP. In many synapses the current flows strongly for only about a millisecond before the transmitter substance is eliminated from the synaptic cleft, either by diffusion into the surrounding regions or as a result of being destroyed by enzymes. The latter process is known to occur when the transmitter substance is acetylcholine, which is destroyed by the enzyme acetylcholinesterase.
The substantiation of this general picture of synaptic transmission requires the solution of many fundamental problems. Since we do not know the specific transmitter substance for the vast majority of synapses in the nervous system, we do not know whether there are many different substances or only a few. The only one identified with reasonable certainty in the mammalian central nervous system is acetylcholine. We know practically nothing about the mechanism by which a presynaptic nerve impulse causes the transmitter substance to be injected into the synaptic cleft. Nor do we know how the synaptic vesicles not immediately next to the synaptic cleft follow to moved up to the firing line to replace the emptied vesicles. It is supposed that the vesicles contain the enzyme systems needed to recharge themselves. The entire process must be swift and efficient: The total amount of transmitter substance in synaptic terminals is enough for only a few minutes of synaptic activity at normal operating rates. There are also knotty problems to be solved on the other side of the synaptic cleft. What, for example, is the nature of the receptor sites? How are the ionic channels in the membrane opened?
The second type of synapse that has been identified in the nervous system. These are the synapses that can inhibit the firing of a nerve cell even though it may be receiving a volley of excitatory impulses. When inhibitory synapses are examined in the electron microscope, they look very much like excitatory synapses. (There are probably some subtle differences, but they need not concern us here.) Microelectrode recordings of the activity of single motoneurons and other nerve cells have now shown that the inhibitory postsynaptic potential (IPSP) is virtually a mirror image of the EPSP. Moreover, individual inhibitory synapses, like excitatory synapses, have a cumulative effect. The chief difference is simply that the IPSP makes the cell's internal voltage more negative than it is normally, which is in a direction opposite to that needed for generating a spike discharge.
By driving the internal voltage of a nerve cell in the negative direction inhibitory synapses oppose the action of excitatory synapses, which of course drive it in the positive direction. So if the potential inside a resting cell is 70 millivolts negative, a strong volley of inhibitory impulses can drive the potential to 75 or 80 millivolts depreciating count. One can easily see that if the potential is made more negative in this way the excitatory synapses find it more difficult to raise the internal voltage to the threshold point for the generation of a spike. Thus, the nerve cell responds to the algebraic sum of the internal voltage changes produced by excitatory and inhibitory synapses.
If, as in the experiment described earlier, the internal membrane potential is altered by the flow of an electric current through one barrel of a double-barreled microelectrode, one can observe the effect of such changes on the inhibitory postsynaptic potential. When the internal potential is made less negative, the inhibitory postsynaptic potential is deepened. Conversely, when the potential is made more negative, the IPSP diminishes; it finally reverses when the internal potential is driven below minus 80 millivolts.
One can, in this way be assumed that inhibitory synapse’s share with excitatory synapses the ability to change the ionic permeability of the synaptic membrane. The difference is that inhibitory synapses enable ions to flow freely down an electrochemical gradient that has an equilibrium point at minus 80 millivolts rather than at zero, as is the case for excitatory synapses. This effect could be achieved by the outward flow of positively charged ions such as potassium or the inward flow of negatively charged ions such as chloride, or by a combination of negative and positive ionic flows such that the interior reaches equilibrium at minus 80 millivolts.
If the concentration of chloride ions within the cell is increased as much as three times, the inhibitory postsynaptic potential reverses and acts as a depolarizing current; that is, it resembles an excitatory potential. On the other hand, if the cell is heavily injected with sulfate ions, which are also negatively charged, there is no such reversal. This simple test shows that under the influence of the inhibitory transmitter substance, which is still unidentified, the subsynaptic membrane becomes permeable momentarily to chloride ions but not to sulfate ions. During the generation of the IPSP the outflow of chloride ions is so rapid that it more than outweighs the flow of other ions that generate the normal inhibitory potential.
The effect of injecting motoneurons with more than 30 kinds of negatively lunged ions. With one exception the hydrated ions (ions bound to water) to which the cell membrane is permeable under the influence of the inhibitory transmitter substance are smaller than the hydrated ions to which the membrane is impermeable. The exception is the formate ion (HCO2-), which may have an ellipsoidal shape and so be able to pass through membrane pores that block smaller spherical ions.
Apart from the formate ion all the ions to which the membrane is permeable have a diameter not greater than 1.14 times the diameter of the potassium ion; That is, they are less than 2.9 angstrom units in diameter. Comparable investigations in other laboratories have found the same permeability effects, including the exceptional behavior of the formate ion, in fishes, toads and snails. It might be that the ionic mechanism responsible for synaptic inhibition is the same throughout the animal kingdom.
The significance of these and other studies is that they strongly suggest that the inhibitory transmitter substance open the membrane to the flow of potassium ions but not to sodium ions. It is known that the sodium ion is somewhat larger than any of the negatively charged ions, including the formate ion, that are able to pass through the membrane during synaptic inhibition. Testing the effectiveness of potassium ions by injecting excess amounts into the cell is not possible, however, because the excess is immediately diluted by an osmotic flow of water into the cell.
The concentration of potassium ions inside the nerve cell is about 30 times greater than the concentration outside, and to maintain this large difference in concentration without the help of some metabolic pumps inside of the membrane would have to be charged 90 millivolts negative with respect to the exterior. This implies that if the membrane were suddenly made porous to potassium ions, the resulting outflow of ions would make the inside potential of the membrane even more negative than it is in the resting state, and that is just what happens during synaptic inhibition. The membrane must not simultaneously become porous to sodium ions, because they exist in much higher concentration outside the cell than inside and their rapid inflow would more than compensate for the potassium outflow. In fact, the fundamental difference between synaptic excitation and synaptic inhibition is that the membrane freely passes sodium ions in response to the former and largely excludes the passage of sodium ions in response to the latter.
This fine discrimination between ions that are not very different in size must be explained by any hypothesis of synaptic action. It is most unlikely that the channels through the membrane are created afresh and accurately maintained for a thousandth of a second every time a burst of transmitter substance is released into the synaptic cleft. It is more likely that channels of at least two different sizes are built directly into the membrane structure. In some way the excitatory transmitter substance would selectively unplug the larger channels and permit the free inflow of sodium ions. Potassium ions would simultaneously flow out and thus would tend to counteract the large potential change that would be produced by the massive sodium inflow. The inhibitory transmitter substance would selectively unplug the smaller channels that are large enough to pass potassium and chloride ions but not sodium ions.
To explain certain types of inhibitory features must be added to this hypothesis of synaptic transmission. In the simple hypothesis chloride and potassium ions can flow freely through pores of all inhibitory synapses. It has been shown, however, that the inhibition of the contraction of heart muscle by the vagus nerve is due almost exclusively to potassium-ion flow. On the other hand, in the muscles of crustaceans and in nerve cells in the snail's brain synaptic inhibition is due largely to the flow of chloride ions. This selective permeability could be explained if there were fixed charges along the walls of the channels. If such charges were negative, they would repel negatively charged ions and prevent their passage; if they were positive, they would similarly prevent the passage of positively charged ions. One can now suggest that the channels opened by the excitatory transmitter are negatively charged and so do not permit the passage of the negatively charged chloride ion, even though it is small enough to move through the channel freely.
One might wonder if a given nerve cell can have excitatory synaptic action at some of its axon terminals and inhibitory action at others. The answer is no. Two different kinds of nerve cells are needed, one for each type of transmission and synaptic transmitter substance. This can readily be shown by the effect of strychnine and tetanus toxins in the spinal cord; They specifically prevent inhibitory synaptic action and leave excitatory action unaltered. As a result the synaptic excitation of nerve cells is uncontrolled and convulsions result. The special types of cells responsible for inhibitory synaptic action are now being recognized in many parts of the central nervous system.
This account of communication between nerve cells is necessarily oversimplified, yet it shows that some significant advances are being made at the level of individual components of the nervous system. By selecting the most favorable situations we have been able to throw light on some details of nerve-cell behavior. We can be encouraged by these limited successes. Nevertheless, the task of understanding in a comprehensive way how the human brain operates staggers its own imagination.
Our brain begins with its portion of the central nervous system contained within the skull. The brain is the control center for movement, sleep, hunger, thirst, and virtually every other vital activity necessary to survival. All human emotions - including love, hate, fear, anger, elation, and sadness - are controlled by the brain. It also receives and interprets the countless signals that are sent to it from other parts of the body and from the external environment. The brain makes us conscious, emotional, and intelligent
The human brain has three major structural components: the large dome-shaped cerebrum, the smaller somewhat spherical cerebellum, and the brainstem. Prominent in the brainstem are the medulla oblongata and the thalamus - between the medulla and the cerebrum. The cerebrum is responsible for intelligence and reasoning. The cerebellum helps to maintain balance and posture. The medulla is involved in maintaining involuntary functions such as respiration, and the thalamus act as a relay center for electrical impulses traveling to and from the cerebral cortex.
The adult human brain is a 1.3-kg. (3-lb.) Mass of pinkish-gray jellylike tissue made up of approximately 100 billion nerve cells or neurons: The Neuroglia (supporting-tissue) cells, and vascular (blood-carrying) and other tissues.
Between the brain and the cranium - the part of the skull that directly covers the brain - are three protective membranes, or meninges. The outermost membrane, the dura mater, is the toughest and thickest. Below the dura mater is a middle membrane, called the arachnoid layer. The innermost membrane, the pia mater, consists mainly of small blood vessels and follows the contours of the surface of the brain.
A clear liquid, the cerebrospinal fluid, bathes the entire brain and fills a series of four cavities, called ventricles, near the center of the brain. The cerebrospinal fluid protects the internal portion of the brain from varying pressures and transports chemical substances within the nervous system.
From the outside, the brain appears as three associatively distinct but connected parts, the cerebrum (the Latin word for brain) - two large, almost symmetrical hemispheres; the cerebellum ('little brain') - two smaller hemispheres located at the back of the cerebrum; and the brain stem - a central core that gradually becomes the spinal cord, exiting the skull through an opening at its base called the foramen magnum. Two other major parts of the brain, the thalamus and the hypothalamus, lie in the midline above the brain stem underneath the cerebellum.
The brain and the spinal cord together make up the central nervous system, which communicates with the rest of the body through the peripheral nervous system. The peripheral nervous system consists of 12 pairs of cranial nerves extending from the cerebrum and brain stem; a system of other nerves branching throughout the body from the spinal cord, and the autonomic nervous system, which regulates vital functions is not very consciously of its own control, such as the activity of the heart muscle, smooth muscle (involuntary muscle found in the skin, blood vessels, and internal organs), and glands.
Many motor and sensory functions have been ‘mapped’ to specific areas of the cerebral cortex, some of which are indicated here. In general, these areas exist in both hemispheres of the cerebrum, each serving the opposite side of the body. Fewer defined are the areas of association, located mainly in the frontal cortex, operatives in functions of thought and emotion and responsible for linking input from different senses. The areas of language are an exception: Both Wernicke’s area, concerned with the comprehension of spoken language, and Broca’s area, governing the production of speech, have been pinpointed on the cortex.
Most high-level brain functions take place in the cerebrum. Its two large hemispheres make up approximately 85 percent of the brain's weight. The exterior surface of the cerebrum, the cerebral cortex, is a convoluted, or folded, grayish layer of cell bodies known as the gray matter. The gray matter covers an underlying mass of fibers called the white matter. The convolutions are made up of ridgelike bulges, known as gyri, separated by small grooves called sulci and larger grooves called fissures. Approximately two-thirds of the cortical surface is hidden in the folds of the sulci. The extensive convolutions enable a very large surface area of brain cortices - roughly, 1.5 m2 (16 ft2) in an adult - to fit within the cranium. The pattern of these convolutions is similar, although not identical, in all humans.
The two cerebral hemispheres are partially separated from each other by a deep fold known as the longitudinal fissure. Communication between the two hemispheres is through several concentrated bundles of axons, called commissures, the largest of which is the corpus callosum.
Several major sulci divides the cortex into distinguishable regions. The central sulcus, or Rolandic fissure, runs from the middle of the top of each hemisphere downward, forwards, and toward another major sulcus, the lateral (side), or Sylvian, sulcus. These and other sulci and gyri divide the cerebrum into five lobes: The frontal, parietal, temporal, and occipital lobes and the insula.
Although the cerebrum is symmetrical in structure, with two lobes emerging from the brain stem and matching motor and sensory areas in each, certain intellectual functions are restricted to one hemisphere. A person’s dominant hemisphere is usually occupied with language and logical operations, while the other hemisphere controls emotion and artistic and spatial skills. In nearly all right-handed and many left-handed people, the left hemisphere is dominant.
The frontal lobe is the largest of the five and consists of all the cortices in front of the central sulcus. Broca's area, a part of the cortex related to speech, is located in the frontal lobe. The parietal lobe consists of the cortex behind the central sulcus to some sulcus near the back of the cerebrum known as the parieto-occipital sulcus. The parieto-occipital sulcus, in turn, forms the front border of the occipital lobe, which are the rearmost part of the cerebrum. The temporal lobe is to the side of and below the lateral sulcus. Wernicke's area, a part of the cortex related to the understanding of language, is located in the temporal lobe. The insula lies deep within the folds of the lateral sulcus.
The cerebrum receives information from all the sense organs and sends motor commands (signals that results in activity in the muscles or glands) to other parts of the brain and the rest of the body. Motor commands are transmitted by the motor cortex, a strip of cerebral cortex extending from side to side across the top of the cerebrum just in front of the central sulcus. The sensory cortex, parallel strips of cerebral cortex just in back of the central sulcus, receives input from the sense organs.
Many other areas of the cerebral cortex have also been mapped according to their specific functions, such as vision, hearing, speech, emotions, language, and other aspects of perceiving, thinking, and remembering. Cortical regions known as associative cortices are responsible for integrating multiple inputs, processing the information, and carrying out complex responses.
The cerebellum coordinates body movements. Located at the lower back of the brain beneath the occipital lobes, the cerebellum is divided into two lateral (side-by-side) lobes connected by a fingerlike bundle of white fibers called the vermis. The outer layer, or cortex, of the cerebellum consists of fine folds called folia. As in the cerebrum, the outer layer of cortical gray matter surrounds a deeper layer of white matter and nuclei (groups of nerve cells). Three fiber bundles called cerebellar peduncles connect the cerebellum to the three parts of the brain stem - the midbrain, the pons, and the medulla oblongata.
The cerebellum coordinates voluntary movements by fine-tuning commands from the motor cortex in the cerebrum. The cerebellum also maintains posture and balance by controlling muscle tone and sensing the position of the limbs. All motor activity, from hitting a baseball to fingering a violin, depends on the cerebellum.
The limbic system is a group of brain structures that play a role in emotion, memory, and motivation. For example, electrical stimulation of the amygdala in laboratory animals can provoke fear, anger, and aggression. The hypothalamus regulates hunger, thirst, sleep, body temperature, sexual drive, and other functions.
The thalamus and the hypothalamus lie underneath the cerebrum and connect it to the brain stem. The thalamus consist of two rounded masses of gray tissue lying within the middle of the brain, between the two cerebral hemispheres. The thalamus are the main relay station for incoming sensory signals to the cerebral cortex and for outgoing motor signals from it. All sensory input to the brain, except that of the sense of smell, connects to individual nuclei of the thalamus.
The hypothalamus lies beneath the thalamus on the midline at the base of the brain. It regulates or is involved directly in the control of many of the body's vital drives and activities, such as eating, drinking, temperature regulation, sleep, emotional behavior, and sexual activity. It also controls the function of internal body organs by means of the autonomic nervous system, interacts closely with the pituitary gland, and helps coordinate activities of the brain stem.
The brain stem, is the lowest part of the brain. It serves as the path for messages traveling between the upper brain and spinal cord but is also the seat of basic and vital functions such as breathing, blood pressure, and heart rates, as well as reflexes like eye movement and vomiting. The brain stem has three main parts: the medulla, pons, and midbrain. A canal runs longitudinally through these structures carrying cerebrospinal fluid. Also distributed along its length is a network of cells, referred to as the reticular formation, that governs the state of alertness.
The brain stem is revolutionarily the most primitive part of the brain and is responsible for sustaining the basic functions of life, such as breathing and blood pressure. It includes three main structures lying between and below the two cerebral hemispheres - the midbrain, pons, and medulla oblongata.
The topmost structure of the brain stem is the midbrain. It contains major relay stations for neurons transmitting signals to the cerebral cortex, as well as many reflex centers - pathways carrying sensory (input) information and motor (output) command. Relays and reflex centers for visual and auditory (hearing) functions are located in the top portion of the midbrain. A pair of nuclei called the superior colliculus control reflex actions of the eye, such as blinking, opening and closing the pupil, and focusing the lens. A second pair of nuclei, called the inferior colliculus, controls auditory reflexes, such as adjusting the ear to the volume of sound. At the bottom of the midbrain are reflex and relay centers relating to pain, temperature, and touch, as well as several regions associated with the control of movement, such as the red nucleus and the substantia nigra.
Continuously with and below the midbrain and directly in front of the cerebellum is a prominent bulge in the brain stem called the pons. The pons consists of large bundles of nerve fibers that connect the two halves of the cerebellum and also connect each side of the cerebellum with the opposite-side cerebral hemisphere. The pons serves mainly as a relay station linking the cerebral cortex and the medulla oblongata.
The long, stalklike lowermost portion of the brain stem is called the medulla oblongata. At the top, it is continuous with the pons and the midbrain; at the bottom, it makes a gradual transition into the spinal cord at the foramen magnum. Sensory and motor nerve fibers connecting the brain and the rest of the body cross over to the opposite side as they pass through the medulla. Thus, the left half of the brain communicates with the right half of the body, and the right half of the brain with the left half of the body.
Running up the brain stem from the medulla oblongata through the pons and the midbrain is a netlike formation of nuclei known as the reticular formation. The reticular formation controls respiration, cardiovascular function, digestion, levels of alertness, and patterns of sleep. It also determines which parts of the constant flow of sensory information into the body are received by the cerebrum.
There are two main types of brain cells, neurons and neuroglia. Neurons are responsible for the transmission and analysis of all electrochemical communication within the brain and other parts of the nervous system. Each neuron is composed of a cell body called a soma, and a major fiber called an axon, and a system of branches called dendrites. Axons, also called nerve fibers, convey electrical signals away from the soma and can be up to 1 m. (3.3 ft.) in length. Most axons are covered with a protective sheath of myelin, a substance made of fats and protein, which insulates the axon. Myelinated axons conduct neuronal signals faster than do unmyelinated axons. Dendrites convey electrical signals toward the soma, are shorter than axons, and are usually multiple and branching.
Neuroglial cells are twice as numerous as neurons and account for half of the brain's weight. Neuroglia (from glia, Greek for 'glue') provides structural support to the neurons. Neuroglial cells also form myelin, guide developing neurons, take up chemicals involved in cell-to-cell communication, and contribute to the maintenance of the environment around neurons.
Twelve pairs of cranial nerves arise symmetrically from the base of the brain and are numbered, from front to back, in the order in which they arise. They connect mainly with structures of the head and neck, such as the eyes, ears, nose, mouth, tongue, and throat. Some are motor nerves, controlling muscle movement; some are sensory nerves, conveying information from the sense organs; and others contain fibers for both sensory and motor impulses. The first and second pairs of cranial nerves - the olfactory (smell) nerves and the optic (vision) nerve - carry sensory information from the nose and eyes, respectively, to the undersurface of the cerebral hemispheres. The other ten pairs of cranial nerves originate in or end in the brain stem.
The brain functions by complex neuronal, or nerve cell, circuits. Communication between neurons is both electrical and chemical and always travels from the dendrites of a neuron, through its soma, and out its axon to the dendrites of another neuron.
Dendrites of one neuron receive signals from the axons of other neurons through chemicals known as neurotransmitters. The neurotransmitters set off electrical charges in the dendrites, which then carry the signals electrochemically to the soma. The soma integrates the information, which is then transmitted electrochemically down the axon to its tip.
At the tip of the axon, small, bubble-like structures called vesicles’ release neurotransmitters that carries the signal across the synapse, or gap, between two neurons. There are many types of neurotransmitters, including norepinephrine, dopamine, and serotonin. Neurotransmitters can be excitatory (that is, they excite an electrochemical response in the dendrite receptors) or inhibitory (they block the response of the dendrite receptors).
One neuron may communicate with thousands of other neurons, and many thousands of neurons are involved with even the simplest behavior. It is believed that these connections and their efficiency can be modified, or altered, by experience.
Scientists have used two primary approaches to studying how the brain works. One approach is to study brain function after parts of the brain have been damaged. Functions that disappear or that is no longer normal after injury to specific regions of the brain can often be associated with the damaged areas. The second approach is to study the response of the brain to direct stimulation or to stimulation of various sense organs.
Neurons are grouped by function into collections of cells called nuclei. These nuclei are connected to form sensory, motor, and other systems. Scientists can study the function of somatosensory (pain and touch), motor, olfactory, visual, auditory, language, and other systems by measuring the physiological (physical and chemical) change that occur in the brain when these senses are activated. For example, electroencephalography (EEG) measures the electrical activity of specific groups of neurons through electrodes attached to the surface of the skull. Electrodes incorporate directly into the brain can give readings of individual neurons. Changes in blood flow, glucose (sugar), or oxygen consumption in groups of active cells can also be mapped.
Although the brain appears symmetrical, how it functions is not. Each hemisphere is specializing and dominates the other in certain functions. Research has shown that hemispheric dominance is related to whether a person is predominantly right-handed or left-handed. In most right-handed people, the left hemisphere processes arithmetic, language, and speech. The right hemisphere interprets music, complex imagery, and spatial relationships and recognizes and expresses emotion. In left-handed people, the pattern of brain organization is more variable.
Hemispheric specialization has traditionally been studied in people who have sustained damage to the connections between the two hemispheres, as may occur with a stroke, an interruption of blood flow to an area of the brain that causes the death of nerve cells in that area. The division of functions between the two hemispheres has also been studied in people who have had to have the connection between the two hemispheres surgically cut in order to control severe epilepsy, a neurological disease characterized by convulsions and loss of consciousness.
The visual system of humans is one of the most advanced sensory systems in the body. More information is conveyed visually than by any other means. In addition to the structures of the eye itself, several cortical regions - collectively called a primary visual and visual associative cortex - as well as the midbrain are involved in the visual system. Conscious processing of visual input occurs in the primary visual cortex, but reflexive - that is, immediate and unconscious - responses occur at the superior colliculus in the midbrain. Associative cortical regions - specialized regions that can associate, or integrate, multiple inputs - in the parietal and frontal lobes along with parts of the temporal lobe are also involved in the processing of visual information and the establishment of visual memories.
Language involves specialized cortical regions in a complex interaction that allows the brain to comprehend and communicate abstract ideas. The motor cortex initiates impulses that travel through the brain stem to produce audible sounds. Neighboring regions of motor cortices, called the supplemental motor cortex, are involved in sequencing and coordinating sounds. Broca's area of the frontal lobe is responsible for the sequencing of language elements for output. The comprehension of language is dependent upon Wernicke's area of the temporal lobe. Other cortical circuits connect these areas.
Memory is usually considered a diffusely stored associative process - that is, it puts together information from many different sources. Although research has failed to identify specific sites in the brain as locations of individual memories, certain brain areas are critical for memory to function. Immediate recall - the ability to repeat short series of words or numbers immediately after hearing them - is thought to be located in the auditory associative cortex. Short-term memory - the ability to retain a limited amount of information for up to an hour - is located in the deep temporal lobe. Long-term memory probably involves exchanges between the medial temporal lobe, various cortical regions, and the midbrain.
The autonomic nervous system regulates the life support systems of the body reflexively - that is, without conscious direction. It automatically controls the muscles of the heart, digestive system, and lungs; Certain glands, and homeostasis - that is, the equilibrium of the internal environment of the body. The autonomic nervous system itself is controlled by nerve centers in the spinal cord and brain stem and is fine-tuned by regions higher in the brain, such as the midbrain and cortex. Reactions such as blushing indicate that cognitive, or thinking, centers of the brain are also involved in autonomic responses.
The brain is guarded by several highly developed protective mechanisms. The bony cranium, the surrounding meninges, and the cerebrospinal fluid all contribute to the mechanical protection of the brain. In addition, a filtration system called the blood-brain barrier protects the brain from exposure to potentially harmful substances carried in the bloodstream.
Brain disorders have a wide range of causes, including head injury, stroke, bacterial diseases, complex chemical imbalances, and changes associated with aging.
Head injury can initiate a cascade of damaging events. After a blow to the head, a person may be stunned or may become unconscious for a moment. This injury, called - concussion, - usually leaves no permanent damage. If the blow is more severe and hemorrhage (excessive bleeding) and swelling occurs, however, severe headache, dizziness, paralysis, a convulsion, or temporary blindness may result, depending on the area of the brain affected. Damage to the cerebrum can also result in profound personality changes.
Damage to Broca's area in the frontal lobe causes difficulty in speaking and writing, a problem known as Broca's aphasia. Injury to Wernicke's area in the left temporal lobe results in an inability to comprehend spoken language, called Wernicke's aphasia.
An injury or disturbance to a part of the hypothalamus may cause a variety of different symptoms, such as loss of appetite with an extreme drop in body weight, increase in appetite leading to obesity; Extraordinary thirst with excessive urination (diabetes insipidus), failure in body-temperature control, resulting in either low temperature (hypothermia) or high temperature (fever), excessive emotionality, and uncontrolled anger or aggression. If the relationship between the hypothalamus and the pituitary gland is damaged, other vital bodily functions may be disturbed, such as sexual function, metabolism, and cardiovascular activity.
Injury to the brain stem is even more serious because it houses the nerve centers that control breathing and heart action. Damage to the medulla oblongata usually results in immediate death.
A stroke is damage to the brain due to an interruption in blood flow. The interruption may be caused by a blood clot, constriction of a blood vessel, or rupture of a vessel accompanied by bleeding. A pouchlike expansion of the wall of a blood vessel, called an aneurysm, may weaken and burst, for example, because of high blood pressure.
Sufficient quantities of glucose and oxygen, transported through the bloodstream, are needed to keep nerve cells alive. When the blood supply to a small part of the brain is interrupted, the cells in that area die and the function of the area is lost. A massive stroke can cause a one-sided paralysis (hemiplegia) and sensory loss on the side of the body opposite the hemisphere damaged by the stroke.
Some brain diseases, such as multiple sclerosis and Parkinson disease, are progressive, becoming worse over time. Multiple sclerosis damages the myelin sheath around axons in the brain and spinal cord. As a result, the affected axons cannot transmit nerve impulses properly. Parkinson disease destroys the cells of the substantia nigra in the midbrain, resulting in a deficiency in the neurotransmitter dopamine that affects motor functions.
Cerebral palsy is a broad term for brain damage sustained close to birth that permanently affects motor function. The damage may take place either in the developing fetus, during birth, or just after birth and is the result of the faulty development or breaking down of motor pathways. Cerebral palsy is nonprogressive - that is, it does not worsen with time.
A bacterial infection in the cerebrum or in the coverings of the brain, swelling of the brain, or an abnormal growth of healthy brain tissue can all cause an increase in intracranial pressure and result in serious damage to the brain.
Scientists are finding that certain brain chemical imbalances are associated with mental disorders such as schizophrenia and depression. Such findings have changed scientific understanding of mental health and have resulted in new treatments that chemically correct these imbalances.
During childhood development, the brain is particularly susceptible to damage because of the rapid growth and reorganization of nerve connections. Problems that originate in the immature brain can appear as epilepsy or other brain-function problems in adulthood.
Several neurological problems are common in aging. Alzheimer's disease damages many areas of the brain, including the frontal, temporal, and parietal lobes. The brain tissue of people with Alzheimer's disease shows characteristic patterns of damaged neurons, known as plaques and tangles. Alzheimer's disease produces progressive dementia, characterized by symptoms such as failing attention and memory, loss of mathematical ability, irritability, and poor orientation in space and time.
A magnetic resonance imaging (MRI) scan of the human brain reveals the contours of one of the brain’s hemispheres. The scan produced in the gyri, or ridges, appear in red, while the sulci, or valleys are imahged indicators marked as being blue. Each person has slightly different patterns of gyri and sulci, which reflect individual differences in brain development.
Several commonly used diagnostic methods give images of the brain without invading the skull. Some portray anatomy - that is, the structure of the brain - whereas others measure brain function. Two or more methods may be used to complement each other, together providing a more complete picture than would be possible by one method alone.
Magnetic resonance imaging (MRI), introduced in the early 1980s, beams high-frequency radio waves into the brain in a highly magnetized field that causes the protons that form the nuclei of hydrogen atoms in the brain to reemit the radio waves. The reemitted radio waves are analyzed by computer to create thin cross-sectional images of the brain. MRI provides the most detailed images of the brain and is safer than imaging methods that use X-rays. However, MRI is a lengthy process and also cannot be used with people who have pacemakers or metal implants, both of which are adversely affected by the magnetic field.
Computed tomography (CT), also known as CT scans, developed in the early 1970s. This imaging method X-rays the brain from many different angles, feeding the information into a computer that produces a series of cross-sectional images. CT is particularly useful for diagnosing blood clots and brain tumors. It is a much quicker process than magnetic resonance imaging and is therefore advantageous in certain situations - for example, with people who are extremely ill.
This positron emission tomography (PET) scans of the brain shows the activity of brain cells in the resting state and during three types of auditory stimulation. PET uses radioactive substances introduced within the brain to measure such brain functions as cerebral metabolism, blood flow and volume, oxygen use, and the formation of neurotransmitters. This imaging method collects data from many different angles, feeding the information into a computer that produces a series of cross-sectional images.
Changes in brain function due to brain disorders can be visualized in several ways. Magnetic resonance spectroscopy measures the concentration of specific chemical compounds in the brain that may change during specific behaviors. Functional magnetic resonance imaging (fMRI) maps changes in oxygen concentration that correspond to nerve cell activity.
Positron emission tomography (PET), developed in the mid-1970s, uses computed tomography to visualize radioactive tracers, radioactive substances are introduced into the brain intravenously or by inhalation. PET can measure such brain functions as cerebral metabolism, blood flow and volume, oxygen use, and the formation of neurotransmitters. Single photon emission computed tomography (SPECT), developed in the 1950s and 1960s, used radioactive tracers to visualize the circulation and volume of blood in the brain.
Brain-imaging studies have provided new insights into sensory, motor, language, and memory processes, as well as brain disorders such as epilepsy, cerebrovascular disease; Alzheimer's, Parkinson, and Huntington's diseases, and various mental disorders, such as schizophrenia.
Although all vertebrate brains share the same basic three-part structure, the development of their constituent parts varies across the evolutionary scale. In fish, the cerebrum is dwarfed by the rest of the brain and serves mostly to process input from the senses. In reptiles and amphibians, the cerebrum is proportionally larger and begins to connect and form conclusions about this input. Birds have well-developed optic lobes, making the cerebrum even larger. Among mammals, the cerebrum dominates the brain. It is most developed among primates, in whom cognitive ability is the highest.
In lower vertebrates, such as fish and reptiles, the brain is often tubular and bears a striking resemblance to the early embryonic stages of the brains of more highly evolved animals. In all vertebrates, the brain is divided into three regions: the forebrain (prosencephalon), the midbrain (mesencephalon), and the hindbrain (rhombencephalon). These three regions further sub-divide into different structures, systems, nuclei, and layers.
The more highly evolved the animal, the more complex is the brain structure. Human beings have the most complex brains of all animals. Evolutionary forces have also resulted in a progressive increase in the size of the brain. In vertebrates lower than mammals, the brain is small. In meat-eating animals, particularly primates, the brain increases dramatically in size.
The cerebrum and cerebellum of higher mammals are highly convoluted in order to fit the most gray matter surface within the confines of the cranium. Such highly convoluted brains are called gyrencephalic. Many lower mammals have a smooth, or lissencephalic (smooth head), cortical surfaces.
There is also evidence of evolutionary adaption of the brain. For example, many birds depend on an advanced visual system to identify food at great distances while in flight. Consequently, their optic lobes and cerebellum are well developed, giving them keen sight and outstanding motor coordination in flight. Rodents, on the other hand, as nocturnal animals, do not have a well-developed visual system. Instead, they rely more heavily on other sensory systems, such as a highly-developed sense of smell and facial whiskers.
Recent research in brain function suggests that there may be sexual differences in both brain anatomy and brain function. One study indicated that men and women may use their brains differently while thinking. Researchers used functional magnetic resonance imaging to observe which parts of the brain were activated as groups of men and women tried to determine whether sets of nonsense words rhymed. Men used only Broca's area in this task, whereas women used Broca's area plus an area on the right side of the brain.
The Cell, in [biology] is the most basic unit of life. Cells are the smallest structures capable of basic life processes, such as taking in nutrients, expelling waste, and reproducing. All living things are composed of cells. Some microscopic organisms, such as bacteria and protozoa, are unicellular, meaning they consist of a single cell. Plants, animals, and fungi are multicellular; that is, they are composed of a great many cells working in concert. But whether it makes up an entire bacterium or is just one of the trillions in a human being, the cell is a marvel of design and efficiency. Cells carry out thousands of biochemical reactions each minute and reproduce new cells that perpetuate life.
The word cell refers to several types of organisms. Cells such as paramecia, dinoflagellates, diatoms, and spirochetes are self-maintaining organisms; cells such as lymphocytes, erythrocytes, muscle cells, nerve cells, cardiac muscle, and chromoplasts are more specializing cells that are a part of higher multicellular organisms. Nonetheless, of its size or whether the cell is a complete organism or just part of an organism, all cells have certain structural components in common. All cells have some type of outer cell boundary that permits some materials to leave and enter the cell and a cell interior composed of a water-rich, fluid material called cytoplasm that contains hereditary material in the form of deoxyribonucleic acid (DNA).
Cells vary considerably in size. The smallest cell, a type of bacterium known as a mycoplasma, measures 0.0001 mm. (0.000004 in.) in diameter; 10,000 mycoplasmas in a row are only as wide as the diameter of a human hair. Among the largest cells are the nerve cells that run down a giraffe’s neck; these cells can exceed 3 m. (9.7 ft.) in length. Human cells also display a variety of sizes, from small red blood cells that measure 0.00076 mm. (0.00003 in.) to liver cells that may be ten times larger. About 10,000 average-sized human cells can fit on the head of a pin.
Along with their differences in size, cells present an array of shapes. Some, such as the bacterium Escherichia coli, resemble rods. The paramecium, a type of protozoan, is a slipper shaped. The amoeba, another protozoan, has an irregular form that changes shape as it moves around. Plant cells typically resemble boxes or cubes. In humans, the outermost layers of skin cells are flat, while muscle cells are long and thin. Some nerve cells, with their elongated, tentacle-like extensions, suggest an octopus.
In multicellular organisms, shape is typically tailored to the cell’s job. For example, flat skin cells pack tightly into a layer that protects the underlying tissues from invasions by bacteria. Long, thin muscle cells’ contract readily to move bones. The numerous extensions from a nerve cell enable it to connect to several other nerve cells in order to send and receive messages rapidly and efficiently.
In and by itself, that each cell is a model of independence and self-containment. Like some miniature, walled city in perpetual rush hour, the cell constantly bustles with traffic, shuttling essential molecules from place to place to carry out the business of living. Despite their individuality, however, cells also display a remarkable ability to join, communicate, and coordinate with other cells. The human body, for example, consists of an estimated 20 to 30 trillion cells. Dozens of different kinds of cells are organized into specialized groups called tissues. Tendons and bones, for example, are composed of connective tissue, whereas skin and mucous membranes are built from epithelial tissue. Different tissue types are assembled into organs, which are structures specialized to perform particular functions. Examples of organs include the heart, stomach, and brain. Organs, in turn, are organized into systems such as the circulatory, digestive, or nervous systems. All together, these assembled organ systems form the human body.
The components of cells are molecules, nonliving structures formed by the union of atoms. Small molecules serve as building blocks for larger molecules. Proteins, nucleic acids, carbohydrates, and lipids, which include fats and oils, are the four major molecules that underlie cell structure and also participate in cell functions. For example, a tightly organized arrangement of lipids, proteins, and protein-sugar compounds forms the plasma membrane, or outer boundary, of certain cells. The organelles, membrane-bound compartments in cells, are built largely from proteins. Biochemical reactions in cells are guided by enzymes, specialized proteins that speed up chemical reactions. The nucleic acid deoxyribonucleic acid (DNA) contains the hereditary information for cells, and another nucleic acid, ribonucleic acid (RNA), works with DNA to build the thousands of proteins the cell needs.
Cells fall into one of two categories: Prokaryotic or eukaryotic, in a prokaryotic cell, found only in bacteria and archaebacteria, all the components, including the DNA, mingle freely in the cell’s interior, a single compartment. Eukaryotic cells, which make up plants, animals, fungi, and all other life forms, contain numerous compartments, or organelles, within each cell. The DNA in eukaryotic cells is enclosed in a special organelle called the nucleus, which serves as the cell’s command center and information library. The term prokaryote comes from Greek words that mean ‘before the nucleus’ or ‘prenucleus,’ while eukaryote means ‘a true nucleus.’
Bacteria’s cells typically are surrounded by a rigid, protective cell wall. The cell membrane, also called the plasma membrane, regulates passage of materials into and out of the cytoplasm, the semi-fluid that fill the cell. The DNA, located in the nucleoid region, contains the genetic information for the cell. Ribosomes carry out protein synthesis. Many bacteria contain some pilus (plural pili), a structure that extends out of the cell to transfer DNA to another bacterium. The flagellum, found in numerous species, is used for the locomotion. Some bacteria contain a plasmid, a small chromosomes with extra genes. Others have a capsule, a sticky substance external to the cell wall that protects bacteria from attack by white blood cells. Mesosomes were formerly thought to be structures with unknown functions, but now are known to be artifacts created when cells are prepared for viewing with electron microscopes.
Prokaryotic cells are among the tiniest of all cells, ranging in size from 0.0001 to 0.003 mm. (0.000004 to 0.0001 in.) in diameter. About a hundred typical prokaryotic cells lined up in a row would match the thickness of a book page. These cells, which can be rod-like, spherical, or spiral in shape, are surrounded by a protective cell wall. Like most cells, prokaryotic cells live in a watery environment, whether it is soil moisture, a pond, or the fluid surrounding cells in the human body. Tiny pores in the cell wall enable water and the substances dissolved in it, such as oxygen, to flow into the cell; these pores also allow wastes to flow out.
Pushed up against the inner surface of the prokaryotic cell wall is a thin membrane called the plasma membrane. The plasma membrane, composed of two layers of flexible lipid molecules and interspersed with durable proteins, is both supple and strong. Unlike the cell wall, whose open pores allow the unregulated traffic of materials in and out of the cell, the plasma membrane is selectively permeable, meaning it allows only certain substances to pass through. Thus, the plasma membrane actively separates the cell’s contents from its surrounding fluids.
While small molecules such as water, oxygen, and carbon dioxide diffuse freely across the plasma membrane, the passage of many larger molecules, including amino acids (the building blocks’ of proteins) and sugars, is carefully regulated. Specialized transport proteins accomplish this task. The transport proteins span the plasma membrane, forming an intricate system of pumps and channels through which traffic is conducted. Some substances swirling in the fluid around the cell can enter it only if they bind to and are escorted in by specific transport proteins. In this way, the cell fine-tunes its internal environment.
The plasma membrane encloses the cytoplasm, the semifluid that fill the cell. Composed of about 65 percent water, the cytoplasm is packed with up to a billion molecules per cell, a rich storehouse that includes enzymes and dissolved nutrients, such as sugars and amino acids. The water provides a favorable environment for the thousands of biochemical reactions that take place in the cell.
Within the cytoplasm of all prokaryote is deoxyribonucleic acid (DNA), a complex molecule in the form of a double helix, a shape similar to a spiral staircase. The DNA is about 1,000 times the length of the cell, and to fit inside, it repeatedly twists and folds to form a compact structure called a chromosome. The chromosome in prokaryote is circular, and is located in a region of the cell called the nucleoid. Often, smaller chromosomes called plasmids are located in the cytoplasm. The DNA is divided into units called genes, just like a long train is divided into separate cars. Depending on the species, the DNA contains several hundred or even thousands of genes. Typically, one gene contains coded instructions for building all or part of a single protein. Enzymes, which are specialized proteins, determine virtually all the biochemical reactions that support and sustain the cell.
Also, immersed in the cytoplasm are the only organelles in prokaryotic cells. Tiny bead-like structures called ribosomes. These are the cell’s protein factories. Following the instructions encoded in the DNA, ribosomes churn out proteins by the hundreds every minute, providing needed enzymes, the replacements for worn-out transport proteins, or other proteins required by the cell.
While relatively simple in construction, prokaryotic cells display extremely complex activity. They have a greater range of biochemical reactions than those found in their larger relatives, the eukaryotic cells. The extraordinary biochemical diversity of prokaryotic cells is manifested in the wide-ranging lifestyles of the archaebacteria and the bacteria, whose habitats include polar ice, deserts, and hydrothermal vents - deep regions of the ocean under great pressure where hot water geysers erupt from cracks in the ocean floor.
An animal cell typically contains several types of membrane-bound organs, or organelles. The nucleus directs activities of the cell and carries genetic information from generation to generation. The mitochondria generates energy for the cell. Proteins are manufactured by ribosomes, which are bound to the rough endoplasmic reticulum or float free in the cytoplasm. The Golgi apparatus modifies, packages, and distributes proteins while lysosomes store enzymes for digesting food. The entire cell is wrapped in a lipid membrane that selectively permits materials to pass in and out of the cytoplasm.
Eukaryotic cells are typically about ten times larger than prokaryotic cells. In animal cells, the plasma membrane, rather than a cell wall, forms the cell’s outer boundary. With a design similar to the plasma membrane of prokaryotic cells, it separates the cell from its surroundings and regulates the traffic across the membrane.
The eukaryotic cell cytoplasm is similar to that of the prokaryote cell except for one major difference: Eukaryotic cells house a nucleus and numerous other membrane-enclosed organelles. Like separate rooms of a house, these organelles enable specialized functions to be carried out efficiently. The building of proteins and lipids, for example, takes place in separate organelles where specialized enzymes geared for each job are located.
The plasma membrane that surrounds eukaryotic cells is a dynamic structure composed of two layers of phospholipid molecules interspersed with cholesterol and proteins. Phospholipids are composed of a hydrophilic, or water-loving, head and two tails, which are hydrophobic, or water-hating. The two phospholipid layers face each other in the membrane, with the heads directed outward and the tails pointing inward. The water-attracting heads anchor the membrane to the cytoplasm, the watery fluid inside the cell, and also to the water surrounding the cell. The water-bating tails block large water-soluble molecules from passing through the membrane while permitting fat-soluble molecules, including medications such as tranquilizers and sleeping pills, to freely cross the membrane. Proteins embedded in the plasma membrane carry out a variety of functions, including transport of large water soluble molecules such as sugars and certain amino acids. Glycoproteins, proteins bonded to carbohydrates, serve in part to identify the cell as belonging to a unique organism, enabling the immune system to detect foreign cells, such as invading bacteria, which carry different glycoproteins. Cholesterol molecules in the plasma membrane act as stabilizers that limit the movement of the two slippery phospholipids layer, which slide back and forth in the membrane. Tiny gaps in the membrane enable small molecules such as oxygen to diffuse readily into and out of the cell. Since cells constantly use up oxygen, decreasing its concentration within the cell, the higher concentration of oxygen outside the cell causes a net flow of oxygen into the cell. The steady stream of oxygen into the cell enables it to carry out aerobic respiration continually, a process that provides the cell with the energy needed to carry out its functions.
The nucleus is the largest organelle in an animal cell. It contains numerous strands of DNA, the length of each strand being many times the diameter of the cell. Unlike the circular prokaryotic DNA, long sectors of eukaryotic DNA pack into the nucleus by wrapping around proteins. As a cell begins to divide, each DNA strand folds over onto itself several times, forming a rod-shaped chromosome.
The nucleus is surrounded by a double-layered membrane that protects the DNA from potentially damaging chemical reactions that occur in the cytoplasm. Messages pass between the cytoplasm and the nucleus through nuclear pores, which are holes in the membrane of the nucleus. In each nuclear pore, molecular signals flash back and forth as often as ten times per second. For example, a signal to activate a specific gene comes into the nucleus and instructions for production of the necessary protein go out to the cytoplasm.
The nucleus, present in eukaryotic cells, is a discrete structure containing chromosomes, which hold the genetic information for the cell. Separated from the cytoplasm of the cell by a double-layered membrane called the nuclear envelope, and the nucleus contains a cellular material called nucleoplasm. Nuclear pores, present around the circumference of the nuclear membrane, allow the exchange of cellular materials between the nucleoplasm and the cytoplasm.
Attached to the nuclear membrane is an elongated membranous sac called the endoplasmic reticulum. This organelle tunnels through the cytoplasm, folding back and forth on itself to form a series of membranous stacks. Endoplasmic reticulums take two forms: Rough and smooth. A rough endoplasmic reticulum (RER) is so called because it appears bumpy under a microscope. The bumps are actually thousands of ribosomes attached to the membrane’s surface. The ribosomes in eukaryotic cells have the same function as those in prokaryotic cells - protein synthesis - but they differ slightly in structure. Eukaryote ribosomes bound to the endoplasmic reticulum help assemble proteins that typically are exported from the cell. The ribosomes work with other molecules to link amino acids to partially completed proteins. These incomplete proteins then travel to the inner chamber of the endoplasmic reticulum, where chemical modifications, such as the addition of a sugar, are carried out. Chemical modifications of lipids are also carried out in the endoplasmic reticulum.
The endoplasmic reticulum and its bound ribosomes are particularly dense in cells that produce many proteins for export, such as the white blood cells of the immune system, which produce and secrete antibodies. Some ribosomes that manufacture proteins are not attached to the endoplasmic reticulum. These so-called free ribosomes are dispersed in the cytoplasm and typically make proteins - many of them enzymes - that remain in the cell.
The second form of an endoplasmic reticulum, the smooth endoplasmic reticulum (SER), lacks ribosomes and has an even surface. Within the winding channels of the smooth endoplasmic reticulum are the enzymes needed for the construction of molecules such as carbohydrates and lipids. The smooth endoplasmic reticulum is prominent in liver cells, where it also serves to detoxify substances such as alcohol, drugs, and other poisons.
Proteins are transported from free and bound ribosomes to the Golgi apparatus, an organelle that resembles a stack of deflated balloons. It is packed with enzymes that complete the processing of proteins. These enzymes add sulfur or phosphorus atoms to certain regions of the protein, for example, or chop off tiny pieces from the ends of the proteins. The completed protein then leaves the Golgi apparatus for its final destination inside or outside the cell. During its assembly on the ribosome, each protein has acquired a group of from 4 to 100 amino acids called a signal. The signal works as a molecular shipping label to direct the protein to its proper location.
Lysosomes are small, often spherical organelles that function as the cell’s recycling center and garbage disposal. Powerful digestive enzymes concentrated in the lysosome break down worn-out organelles and ship their building blocks to the cytoplasm where they are used to construct new organelles. Lysosomes also dismantle and recycle proteins, lipids, and other molecules.
The mitochondria is the powerhouse of the cell. Within these long, slender organelles, which can appear oval or bean shaped under the electron microscope, enzymes convert the sugar glucose and other nutrients into adenosine triphosphate (ATP). This molecule, in turn, serves as an energy battery for countless cellular processes, including the shuttling of substances across the plasma membrane, the building and transport of proteins and lipids, the recycling of molecules and organelles, and the dividing of cells. Muscle and liver cells are particularly active and require dozens and sometimes up to hundreds mitochondria per cell to meet their energy needs. Mitochondria is unusual in that they contain their own DNA in the form of a prokaryote-like circular chromosome; Have their own ribosomes, which resemble prokaryotic ribosomes, and divide independently of the cell.
Unlike the tiny prokaryotic cell, the relatively large eukaryotic cell requires structural support. The cytoskeleton, a dynamic network of protein tubes, filaments, and fibers, crisscrosses the cytoplasm, anchoring the organelles in place and providing shape and structure to the cell. Many components of the cytoskeleton are assembled and disassembled by the cell as needed. During cell division, for example, a special structure called a spindle is built to move chromosomes around. After cell division, the spindle, no longer needed, is dismantled. Some components of the cytoskeleton serve as microscopic tracks along which proteins and other molecules travel like miniature trains. Recent research suggests that the cytoskeleton also may be a mechanical communication structure that converses with the nucleus to help organize events in the cell.
Plant cells have all the components of animal cells and boast several added features, including chloroplasts, a central vacuole, and a cell wall. Chloroplasts convert light energy - typically from the Sun - into the sugar glucose, a form of chemical energy, in a process known as photosynthesis. Chloroplasts, like mitochondria, possess a circular chromosome and prokaryote-like ribosomes, which manufacture the proteins that the chloroplasts typically need.
The central vacuole of a mature plant cell typically takes up most of the room in the cell. The vacuole, a membranous bag, crowds the cytoplasm and organelles to the edges of the cell. The central vacuole stores water, salts, sugars, proteins, and other nutrients. In addition, it stores the blue, red, and purple pigments that give certain flowers their colours. The central vacuole also contains plant wastes that taste bitter to certain insects, thus discouraging the insects from feasting on the plant.
In plant cells, a sturdy cell wall surrounds and protects the plasma membrane. Its pores enable materials to pass freely into and out of the cell. The strength of the wall also enables a cell to absorb water into the central vacuole and swell without bursting. The resulting pressure in the cells provides plants with rigidity and support for stems, leaves, and flowers. Without sufficient water pressure, the cells collapse and the plant wilts.
To stay alive, cells must be able to carry out a variety of functions. Some cells must be able to move, and most cells must be able to divide. All cells must maintain the right concentration of chemicals in their cytoplasm, ingest food and use it for energy, recycle molecules, expel wastes, and construct proteins. Cells must also be able to respond to changes in their environment.
Although many forms of bacteria are not capable of independent movement, species such as the Salmonella bacterium pictured here can move by means of fine threadlike projections called flagella. The arrangement of flagella across the surface of the bacterium differs from species to species; they can be present at the ends of the bacterium or all across the body surface. Forward movement is accomplished either by a tumbling motion or in a forward manner without tumbling.
Many unicellular organisms swim, glide, thrash, or crawl to search for food and escape enemies. Swimming organisms often move by means of a flagellum, a long tail-like structure made of protein. Many bacteria, for example, have one, two, or many flagella that rotate like propellers to drive the organism along. Some single-celled eukaryotic organisms, such as the euglena, also have a flagellum, but it is longer and thicker than the prokaryotic flagellum. The eukaryotic flagellums work by waving up and down like a whip. In higher animals, the sperm cell uses a flagellum to swim toward the female egg for fertilization.
Movement in eukaryotes is also accomplished with cilia, short, hairlike proteins built by centrioles, which are barrel-shaped structures located in the cytoplasm that assemble and break down protein filaments. Typically, thousands of cilia extend through the plasma membrane and cover the surface of the cell, giving it a dense, hairy appearance. By beating its cilia as if they were oars, an organism such as the paramecium propels itself through its watery environment. In cells that do not move, cilia are used for other purposes. In the respiratory tract of humans, for example, millions of ciliated cells prevent inhaled dust, smog, and microorganisms from entering the lungs by sweeping them up on a current of mucus into the throat, where they are swallowed. Eukaryotic flagella and cilia are formed from basal bodies, small protein structures located just inside the plasma membrane. Basal bodies also help to anchor flagella and cilia.
Still other eukaryotic cells, such as amoebas and white blood cells, move by amoeboid motion, or crawling. They extrude their cytoplasm to form temporary pseudopodia, or false feet, which actually are placed in front of the cell, rather like extended arms. They then drag the trailing end of their cytoplasm up to the pseudopodia. A cell using amoeboid motion would lose a race to a euglena or paramecium. But while it is slow, amoeboid motion is strong enough to move cells against a current, enabling water-dwelling organisms to pursue and devour prey, for example, or white blood cells roaming the blood stream to stalk and engulf a bacterium or virus.
An amoeba, a single-celled organism lacking internal organs, is shown approaching a much smaller paramecium, which it begins to engulf with large outflowings of its cytoplasm, called pseudopodia. Once the paramecium is completely engulfed, a primitive digestive cavity, called a vacuole, forms around it. In the vacuole, acids break the paramecium down into chemicals that the amoeba can diffuse back into its cytoplasm for nourishment.
All cells require nutrients for energy, and they display a variety of methods for ingesting them. Simple nutrients dissolved in pond water, for example, can be carried through the plasma membrane of pond-dwelling organisms via a series of molecular pumps. In humans, the cavity of the small intestine contains the nutrients from digested food, and cells that form the walls of the intestine use similar pumps to pull amino acids and other nutrients from the cavity into the bloodstream. Certain unicellular organisms, such as amoebas, are also capable of reaching out and grabbing food. They used a process known as endocytosis, in which the plasma membrane surrounds and engulfed the food particle, enclosing it in a sac, called a vesicle, that is within the amoeba’s interior.
Cells require energy for a variety of functions, including moving, building up and breaking down molecules, and transporting substances across the plasma membrane. Nutrients contain energy, but cells must convert the energy locked in nutrients to another form - specifically, the ATP molecule, the cell’s energy battery - before it is useful. In single-celled eukaryotic organisms, such as the paramecium, and in multicellular eukaryotic organisms, such as plants, animals, and fungi, mitochondria is responsible for this task. The interior of each mitochondrion consists of an inner membrane that is folded into a mazelike arrangement of separate compartments called cristae. Within the cristae, enzymes form an assembly line where the energy in glucose and other energy-rich nutrients is harnessed to build ATP; thousands of ATP molecules are constructed each second in a typical cell. In most eukaryotic cells, this process requires oxygen and is known as aerobic respiration.
Some prokaryotic organisms also carry out aerobic respiration. They lack mitochondria, however, and carry out aerobic respiration in the cytoplasm with the help of enzymes sequestered there. Many prokaryote species live in environments where there is little or no oxygen, environments such as mud, stagnant ponds, or within the intestines of animals. Some of these organisms produce ATP without oxygen in a process known as anaerobic respiration, where sulfur or other substances take the place of oxygen. Still other prokaryotes, and yeast, a single-celled eukaryote, build ATP without oxygen in a process known as fermentation.
Almost all organisms rely on the sugar glucose to produce ATP. Glucose is made by the process of photosynthesis, in which light energy is transformed to the chemical energy of glucose. Animals and fungi cannot carry out photosynthesis and depend on plants and other photosynthetic organisms for this task. In plants, as we have seen, photosynthesis takes place in organelles called chloroplasts. Chloroplasts contain numerous internal compartments called thylakoids where enzymes aid in the energy conversion process. A single leaf cell contains 40 to 50 chloroplasts. With sufficient sunlight, one large tree is capable of producing upwards of two tons of sugar in a single day. Photosynthesis in prokaryotic organisms - typically aquatic bacteria - is carried out with enzymes clustered in plasma membrane folds called chromatophores. Aquatic bacteria produce the food consumed by tiny organisms living in ponds, rivers, lakes, and seas.
A typical cell must have on hand, about. 30,000 proteins at any-one time. Many of these proteins are enzymes needed to construct the major molecules used by cells - carbohydrates, lipids, proteins, and nucleic acids - nor to aid in the breakdown of such molecules after they have worn out. Other proteins are part of the cell’s structure - the plasma membrane and ribosomes, for example. In animals, proteins also function as hormones and antibodies, and they function like delivery trucks to transport other molecules around the body. Hemoglobin, for example, is a protein that transports oxygen in red blood cells. The cell’s demand for proteins never ceases.
Before a protein can be made, however, the molecular directions to build, it must be extracted from one or more genes. In humans, for example, one gene holds the information for the protein insulin, the hormone that cells need to import glucose from the bloodstream, while at least two genes hold the information for collagen, the protein that imparts strength to skin, tendons, and ligaments. The process of building proteins begins when enzymes, in response to a signal from the cell, bind to the gene that carries the code for the required protein, or part of the protein. The enzymes transfer the code to a new molecule called messenger RNA, which carries the code from the nucleus to the cytoplasm. This enables the original genetic code to remain safe in the nucleus, with messenger RNA delivering small bits and pieces of information from the DNA to the cytoplasm as needed. Depending on the cell type, hundreds or even thousands of molecules of messenger RNA are produced each minute.
Once in the cytoplasm, the messenger RNA molecule links up with a ribosome. The ribosome moves along the messenger RNA like a monorail car along a track, stimulating another form of RNA - transfer RNA - to gather and link the necessary amino acids, pooled in the cytoplasm, to form the specific protein, or section of protein. The protein is modified as necessary by the endoplasmic reticulum and Golgi apparatus before embarking on its mission. Cells teem with activity as they forge the numerous, diverse proteins that are indispensable for life. For a more detailed discussion about protein synthesis, When there are a hundred or more cells, they formed a hollow ball of cells, called a blastula, surrounding a fluid-filled cavity. Later divisions produce three layers of cells - endoderm (inner), mesoderm (middle), and ectoderm (outer) - from which the principal features of the animal will differentiate.
Most cells divide at some time during their life cycle, and some divide dozens of times before they die. Organisms rely on cell division for reproduction, growth, and repair and replacement of damaged or worn out cells. Three types of cell division occur: Binary fission, mitosis, and meiosis. Binary fission, the method used by prokaryotes, produces two identical cells from one cell. The more complex process of mitosis, which also produces two genetically identical cells from a single cell, is used by many unicellular eukaryotic organisms for reproduction. Multicellular organisms use mitosis for growth, cell repair, and cell replacement. In the human body, for example, an estimated 25 million mitotic cell divisions occur every second in order to replace cells that have completed their normal life cycles. Cells of the liver, intestine, and skin may be replaced every few days. Recent research indicates that even brain cell, once thought to be incapable of mitosis, undergo cell division in the part of the brain associated with memory.
In a landmark intersection of science and fiction, cloning leapt from the world’s imagination to its front page in February 1997. It arrived in the innocent form of a sheep named Dolly: The first exact genetic duplicate of an adult mammal due to genetic engineering. Scottish scientists had created Dolly from deoxyribonucleic acid (DNA) - the basic unit of heredity - taken from a single adult sheep cell. The accomplishment threw open the door to profoundly ethical as well as scientific controversy over the potential uses and abuses of cloning. ‘However the debate is resolved,’ wrote Los Angeles Times science reporter Thomas H. Maugh II, ‘the genie is irretrievably out of the bottle.’
The type of cell division required for sexual reproduction is meiosis. Sexually reproducing organisms include seaweeds, fungi, plants, and animals - including, of course, human beings. Meiosis differs from mitosis in that cell division begins with a cell that has a full complement of chromosomes and ends with gamete cells, such as sperm and eggs, that have only half the complement of chromosomes. When a sperm and egg unite during fertilization, the cell resulting from the union, called a zygote, contains the full number of chromosomes.
The story of how cells evolved remains an open and actively investigated question in science. The combined expertise of physicists, geologists, chemists, and evolutionary biologists has been required to shed light on the evolution of cells from the nonliving matter of early Earth. The planet formed about 4.5 billion years ago, and for millions of years, violent volcanic eruptions blasted substances such as carbon dioxide, nitrogen, water, and other small molecules into the air. These small molecules, bombarded by ultraviolet radiation and lightning from intense storms, collided to form the stable chemical bonds of larger molecules, such as amino acids and nucleotides - the building blocks of proteins and nucleic acids. Experiments indicate that these larger molecules form spontaneously under laboratory conditions that simulate the probable early environment of Earth.
Scientists speculate that rain may have carried these molecules into lakes to create a primordial soup - the breeding ground for the assembly of proteins, the nucleic acid RNA, and lipids. Some scientists postulate that these more complex molecules formed in hydrothermal vents rather than in lakes. Other scientists propose that these key substances may have reached Earth on meteorites from outer space. Regardless of the origin or environment, however, scientists do agree that proteins, nucleic acids, and lipids provided the raw materials for the first cells. In the laboratory, scientists have observed lipid molecules joining to form spheres that resemble a cell’s plasma membrane. As a result of these observations, scientists postulate that millions of years of molecular collisions resulted in lipid spheres enclosing RNA, the simplest molecule capable of self-replication. These primitive aggregations would have been the ancestors of the first prokaryotic cells.
Fossil excavations indicate that Cyanobacteria, bacteria capable of photosynthesis, were among the earliest bacteria to evolve, an estimated 3.4 billion to 3.5 billion years ago. In the environment of the early Earth, there were no oxygen, and cyanobacteria probably used fermentation to produce ATP. Over the eons, cyanobacteria performed photosynthesis, which produces oxygen as a byproduct; The result was the gradual accumulation of oxygen in the atmosphere. The presence of oxygen set the stage for the evolution of bacteria that used oxygen in aerobic respiration, a more efficient ATP-producing process than fermentation. Some molecular studies of the evolution of genes in archaebacteria suggest that these organisms may have evolved in the hot waters of hydrothermal vents or hot springs slightly earlier than cyanobacteria, around 3.5 billion years ago. Like cyanobacteria, archaebacteria probably relied on fermentation to synthesize ATP.
No comments:
Post a Comment